TOWARDS A GREEN ECONOMY -ENVIRONMENTAL IMPACT ASSESSMENT OF LOW INDIRECT LAND USE CHANGE (ILUC) **INDUSTRIAL CROPS TO BIOENERGY, BIOFUELS AND BIOPRODUCTS**

Ana Luisa Fernando, Bruno Barbosa, Efi Alexopoulou

32nd European Biomass Conference & Exhibition

24-27 June | Conference & Exhibition 28 June | Technical Tours Marseille

European Green Deal

Operation of the Striving to be the first climate-neutral continent

✓ No net emissions of greenhouse gases by 2050 Economic growth is decoupled from resource use

based on natural resources (e.g. biomass)

energy/biomaterials)

⇒ increased importance!!!!

⇒ development of commercially viable "green products"

⇒ directed to a wide range of applications(e.g.

- ✓ **Dedicated crops**:
 - ✓ biomass characteristics
 - ✓ products and materials of fossil origin replacement
 - ✓ <u>e.g. Bioenergy, biofuels, biobased products</u>
 - ✓ offers environmental advantages
 - reduction of greenhouse gases
 - social benefits, especially in rural areas

Increased demand for biomass:

✓ increased competition for land!!!!!!

⇒Growth of dedicated biomass crops marginal soils

\Rightarrow limit the ethical issues associated with competition with food crops

in

\checkmark to develop, evaluate and optimize sustainable low-ILUC feedstock

systems

⇒ on European marginal agricultural land

⇒ in a climate-resilient and biodiversity-friendly way

⇒ to support feasible bio-based value chains

⇒ developing selected industrial crops and cropping

5

Aim of the study

⇒to identify

- ⇒ local and site-specific environmental impacts
- marginal soils
- \Rightarrow categories studied:

 - impact on soil and water resources
 - biological and landscape diversity

\Rightarrow associated with the cultivation of these crops in

fertilizers and pesticides related emissions

Yields... can be affected ...

- \sim Von-renewable energy savings
- $\bigcirc \downarrow$ GHG emissions savings
- Chemical composition
 - increment of [N, P, K, etc] in the biomass
 - the plants may not reach a mature status
- $\Rightarrow \uparrow$ land use to obtain the same energy output
- need for fertilizers per unit land
- I shelter for animals
- control con
- GHG emissions reduction costs

Fertilizer and Pesticides related emissions

- \mathbf{V} Volatilization of ammonia (NH₃) and oxides of N (NO_x) to the air; contribution to acidification, GHG emissions
- \Box Leaching and runoff of ammonium (NH₄) and nitrate (NO₃) to ground and surface waters; contribution to eutrophication and excess of nitrate in drinking water could be a threat to human health
- **Output** Denitrification to nitrous oxide (N_2O) ; contribution to the greenhouse effect and to ozone depletion
- K emissions terrestrial euthophication
- Pesticides pollution of of soil, water, health issues

Fertilizer and Pesticides related emissions **←** Advantages Disadvantages ->

Run-off and lead	aching Crambe		
important fra on N emission	action		
⇒ Annual crops	Castor		
∽ ↑ N emissio	ns Hemp		
Root/rhyzom dynamics-	e Miscanthus		
perennials	Marginal Land		
Sot accounted	() 2	2
	Pesticides-related e		
	K-Fertilizer-related N-Fertilizer-related		

- emission
- emission
- emissions

Use of water resources **←** Advantages

Most cro sufficed by	ps Crambe	
rainfall	Castor	
	n 🔨	
water-	Hemp	
demanding	crops	
to regions	Miscanthus	
rprecipita	lion	
	Marginal Land	

Groudwater balance

2

Hydrology

O

Use of water resources-Hydrology

\Rightarrow soil cover minimizes run-off ⇒Benefiting perennials ⇒Negative aspect: aquifer refilling slows down

⇒High water needs ----annual crops

Impact on mineral resources Advantages

Disadvantages ->

⇒ Erosion:

potential damage caused by rainfall crossed with \Rightarrow soil cover characteristics of the crops

during their cultivation cycles

Impact on soil - erosion

Advantages

lower erosion risk

Trainfall interception, **1** surface cover, longer time

erosion risk

Disadvantages ->

Erosion

14

FUBCF 2024 Impact on soil – soil properties Advantages Disadvantages ->

→ higher SOM → Better structure → Permanence in the soil, inputs of residues, root development, soil amendment not so intensive

Soil prop

EUBCE 2024 Impact on soil – soil properties Advantages Disadvantages ->

 \Rightarrow annuals

⇒ high soil revolving, short permanence, litter removal, high soil amendment

⇔Lower impact

⇒deep roots/litter left

Soil prop

Biodiversity& Landscape

 \Rightarrow all crops, monoculture, infringement to biodiversity

 \Rightarrow reduced soil tillage, agrochemicals, high biomass

microfauna, gives shelter to invertebrates and birds

Advantages

Disadvantages ->

Biodiversity& Landscape

*⇒*Blossoming give benefits

*⇔*Structure

⇔Color

Advantages

Disadvantages ->

provides higher coverage to wildlife,

blossoming

- benefits regarding soil properties and erodibility
- related with the biological and landscape diversity,
- \Rightarrow due to the higher density of the biomass, that
- \Rightarrow but the oil crops also show benefits due to

- - \Rightarrow water resources and N-fertilizer related emissions were higher in the oil crops and industrial hemp
- \Rightarrow impacts associated with pesticide related emissions
 - \Rightarrow were low to all the crops studied

- \Rightarrow The use of appropriate management practices
 - \Rightarrow adequacy between crop and location,

 - ⇒innovative farming systems
 - \Rightarrow intercropping, agroforestry
 - \Rightarrow established on marginal land at farm level may reward biological diversity index and the impact on the soil quality index

The project has received funding from the European Union's Horizon Europe Research and Innovation Programme under Grant Agreement No. 101082070.

ACKNOWLEDGMENTS

Thank you

EUBCE 2024

28 June | Technical Tours Marseille

32nd European Biomass Conference & Exhibition

24-27 June | Conference & Exhibition

eubce.com

